Анализ эмпирических данных социологии
Генеральная цель всех этих операций - сокращение числа признаков, нужных для итогового анализа. Одновременно достигается первичное обобщение данных, нужное для более глубокого понимания существа изучаемых процессов. Допустим, например, что при контент-анализе по смысловой единице «а» практически информации не было получено (2% всего массива сведений). Сохранив этот пункт, мы потом будем постоянно наталкиваться на нулевые значения. Если можно, целесообразно объединить данную смысловую единицу с подобной ей, укрупнить шкалу. Тогда следует дать уточненную интерпретацию нового признака, теперь достаточно емкого по статистике наполнения. Формирование сводных, агрегатных признаков освобождает от необходимости утомительно интерпретировать малосущественные частности, повышает уровень обобщений, ведет к более емким теоретическим умозаключениям. Одно дело, когда в прикладном – «инженерном» - исследовании анализируют соотносительное значение каждого из элементов производственной ситуации в его влиянии на отношение к работе. И совершенно иначе действуют, если задача состоит в обнаружении социальной закономерности при повторном сравнительном исследовании. Здесь важно обобщить информацию по более емким структурам, например, по всем факторам условий и всем составляющим содержания труда. Поскольку мы знаем частные составляющие того и другого, т.е. аккуратно прошли первый этап анализа, наши дальнейшие операции с данными будут более целеустремленными, экономичными и практичными с точки зрения приближения к основным целям исследования.
На данной стадии, в развитии которой осуществляется переход к анализу взаимосвязей (3-я стадия), будут использоваться довольно сильные операции - факторный анализ, типологизация и подобные им. Очень важно дать необходимые промежуточные истолкования каждого из агрегируемых показателей, ибо это - новые свойства, нуждающиеся в осмыслении, построении соответствующих интерпретационных схем. Как замечает Г.С. Батыгин: «с известной долей преувеличения всю деятельность социолога можно назвать интерпретирующей: случайно попавший в выборку человек интерпретируется как респондент; его жизненные реалии и высказывания интерпретируются в шифрах и «закрытиях» вопросников; первичная социологическая информация интерпретируется в средних величинах, мерах рассеяния и корреляционных коэффициентах; числовые данные должны сопровождаться какими-либо рассуждениями, т.е. опять же интерпретироваться» [8. с. 177]. Тем более нуждаются в построении интерпретационных схем новые емкие признаки, сгруппированные, типологизированные данные. Третья стадия анализа как бы вклинивается в предыдущую. Это - углубление интерпретации и переход к объяснению фактов путем выявления возможных прямых и косвенных влияний на агрегированные свойства, социальные типы, устойчивые образования. Здесь главная опасность - подмена косвенных, опосредованных связей прямыми. Такая ошибка - самая распространенная и менее всего заметная со стороны.
Итак, на данной, вероятно самой ответственной, стадии анализа должны быть получены основные выводы, проверены главные гипотезы, необходимые и для теоретического осмысления проблемы, и для разработки практических рекомендаций.
Четвертая стадия, заключительная, - попытка прогноза развития изучаемого процесса, событий, явлений при определенных условиях [3, 24-25, 212-214]. Лучшим образом решению этой задачи отвечает повторное обследование. При невозможности осуществить повторные исследования на базе разового используют модели мысленного экспериментирования, регрессионные, детермннационные, стохастические и др. Полезно прибегнуть к оценкам экспертов [5] в данном предмете, чтобы проверить надежность прогноза, являющегося результатом квазиэкспериментов.
Общая логика анализа эмпирических данных может быть иллюстрирована схемой 1.
Схема 1 - Последовательность стадий анализа данных
Стадии анализа |
Исследовательские задачи данной стадии анализа |
Основные приемы анализа |
1 |
Выявление аномалий, ошибок и пропусков в исходных данных, коррекция выборки, описание простых распределений |
Качественное осмысление сгруппированных данных; использование приемов описательной статистики; расчеты средних тенденций, вариаций, асимметрии |
2-3 |
Уплотнение исходной информации и ее описание в зарегистрированных показателях с тем, чтобы избавиться от излишней детализации, избежать ошибок последующего анализа вследствие "провалов" в исходных распределениях, повысить уровень обобщения |
Приемы укрупнения исходных шкал, логические комбинации частных признаков, построение индексов, эмпирическая и теоретическая типологизация, факторный анализ |
2-3 |
Выявление прямых и косвенных связей, интерпретация и объяснение основных зависимостей и свойств изучаемых явлений, проверка, главных и второстепенных гипотез исследования |
Построение двухмерных, многомерных таблиц, расчет корреляций, регрессий, энтропии и ассоциации распределений, использование корреляционных графов детерминационных моделей |
4 |
Прогноз изучаемых процессов и явлений на основе объяснительных гипотез |
Приемы мысленного и, если возможно, натурного экспериментирования, повторные и сравнительные исследования, контрольные опросы экспертов для проверки итоговых выводов, моделирование динамических процессов |